Estimated reading time: 3 minutes, 30 seconds

Big data continues to grow exponentially creating a critical need for solutions that can make sense and extract valuable information from it. For example, the Internet is full of a wide variety of constantly growing text sources— blog posts, forum posts, chats, message boards, item and services reviews, etc. If leveraged correctly, this data can provide valuable clues on your customers’ satisfaction, their pain points, and may help to explain past customer behaviors or predict the future ones.

Artificial Intelligence (AI) gave birth to new solutions that leverage speech and text analysis bringing valuable insights into new business areas. By taking a holistic approach to AI – analyzing content across unstructured data, text, video, imagery and audio – data scientists and software developers are building new tools that help address real business needs.

Imagine a tool that analyzes customer calls and chats; automating and speeding up customer complaint analysis.

Recent advances in AI, namely Neural Nets —a set of algorithms, modeled loosely after the human brain, that are designed to recognize patterns— have lowered the computational requirements needed for many important text analysis tasks. By leveraging Neural Nets and natural language processing algorithms, businesses can use text analysis, the automated process that allows machines to extract and classify information from text, such as tweets, emails, support tickets, product reviews, survey responses, etc. This enables businesses to collect important customer data and help reduce customer service costs without losing valuable quality.

One such example is a project that we are working on with a leading software solution provider focused on the customer experience. They needed a text analysis solution that would have the capability to summarize customer call history for each user. The summary allows them to minimize the time spent on repeat problems and provides automated resolution reminders. This solution was achieved by combing several text analysis tools including finding key words, generating titles, solving classification problems, and creating short summaries – all in a comprehensive AI solution. The final solution structures data and significantly reduces customer service costs without losing valuable quality.  

Making Sense of Your Data using MVP and AI First


Many companies are faced with the challenge that the complexity, potential impact, available mathematical methods and technology might be too overwhelming for current systems or resources. In situations like this, we recommend two methodologies: MVP and AI first.

The MVP approach stands for minimal valuable prediction, a well-known minimal valuable product concept often used by software developers but applied to Data Science. The idea is to focus on delivering a minimum viable prediction as fast as you can and iterate from there.

  • Focusing only on the most-pressing problem you want to solve
  • Instead of assembling all your data, assemble only the data that correlates with that problem
  • You’ll work “backwards” as you identify other related data, essentially following the data breadcrumbs that lead to actionable outcomes

This approach is faster, cheaper and has a much higher success rate than typical big data projects in that it starts with small data sets and incrementally scales as you uncover actionable insights ensuring you are on the right track before committing more resources.

As the name suggests, AI first concept suggests that you begin a project by formulating a business task and choosing an approach. After that, follow by asking yourself: what data do we need? What data do we have? Which data pieces are crucial and which ones can be substituted? Next, think about the technology and the properties of your future architecture; does it support the chosen AI approach? Is it flexible to support possible future changes? At every step of this process we iterate and come back to the original business question. This approach requires an organizational mindset shift and is dramatically different than trying to incorporate AI into an existing system.

By leveraging both MVP and AI First methodologies for any of your AI projects, you will produce results faster, cheaper, and without the risk of big-bite data approaches.


Polina Reshetova, a Data Scientist at EastBanc Technologies, earned her PhD in complex systems data analysis. Over the past 5 years, she has been developing machine learning algorithms and predictive analytical techniques.

 

Last modified on Tuesday, 24 September 2019
Read 940 times
Rate this item
(2 votes)

Leave a comment

Make sure you enter all the required information, indicated by an asterisk (*). HTML code is not allowed.

Visit other PMG Sites:

Template Settings

Color

For each color, the params below will give default values
Tomato Green Blue Cyan Dark_Red Dark_Blue

Body

Background Color
Text Color

Header

Background Color

Footer

Select menu
Google Font
Body Font-size
Body Font-family
Direction
PMG360 is committed to protecting the privacy of the personal data we collect from our subscribers/agents/customers/exhibitors and sponsors. On May 25th, the European's GDPR policy will be enforced. Nothing is changing about your current settings or how your information is processed, however, we have made a few changes. We have updated our Privacy Policy and Cookie Policy to make it easier for you to understand what information we collect, how and why we collect it.
Ok Decline